Développer avec les identités remarquables

DURÉE 15 MIN

- → Fiche 14 Développer et réduire à l'aide des identités remarquables
- → Fiche 16 Calculer la valeur d'une expression pour un nombre donné

Soit
$$A = \frac{1}{4} \left[(a+b)^2 - (a-b)^2 \right].$$

- 1. Calculer A pour a = 1 et b = 5.
- 2. Calculer A pour a = -2 et b = -3.
- **3.** Alex affirme que le nombre *A* est égal au produit des nombres *a* et *b*. A-t-il raison ? Justifier.

DÉMARRONS ENSEMBLE

- 1. Remplace a par 1 et b par 5 dans l'expression de A. Calcule la somme et la différence en premier.
- 2. Souviens-toi que le carré d'un nombre négatif est positif.
- 3. Commence par développer et réduire l'expression entre crochets.

CORRIGÉ

1. On calcule A en remplaçant a par 1 et b par 5 :

$$A = \frac{1}{4} \left[(1+5)^2 - (1-5)^2 \right] = \frac{1}{4} \left[6^2 - (-4)^2 \right] = \frac{1}{4} (36-16) = \frac{1}{4} \times 20. \text{ Donc } A = 5.$$

2. On calcule A en remplaçant a par -2 et b par -3:

$$A = \frac{1}{4} \left[\left(-2 - 3 \right)^2 - \left(-2 - \left(-3 \right) \right)^2 \right] = \frac{1}{4} \left[\left(-5 \right)^2 - \left(1 \right)^2 \right] = \frac{1}{4} (25 - 1) = \frac{1}{4} \times 24. \text{ Donc } A = 6.$$

3. On développe et on réduit l'expression A :

$$A = \frac{1}{4} \left[(a+b)^2 - (a-b)^2 \right] = \frac{1}{4} \left[(a^2 + 2ab + b^2) - (a^2 - 2ab + b^2) \right]$$

$$A = \frac{1}{4}(a^2 + 2ab + b^2 - a^2 + 2ab - b^2) = \frac{1}{4} \times 4ab. \text{ Donc } A = ab.$$

Alex a donc raison d'affirmer que le nombre A est égal au produit des nombres a et b.

ATTENTION!

Un exemple ne permet pas d'affirmer qu'une égalité est vraie.

Utiliser les identités remarquables pour calculer

DURÉE 10 MIN

→ Fiche 14 Développer et réduire à l'aide des identités remarquables

Les deux questions suivantes sont indépendantes l'une de l'autre.

- 1. Développer $(x-1)^2$. Justifier que $99^2 = 9801$ en utilisant le développement précédent.
- 2. Développer (x-1)(x+1). Justifier que $99 \times 101 = 9999$.

DÉMARRONS ENSEMBLE

- **1.** Observe que 99 = 100 1.
- 2. Écris 99 × 101 sous la forme (x-1)(x+1).

CORRIGÉ

1. On développe $(x-1)^2$. On obtient $(x-1)^2 = x^2 - 2x + 1$.

On a:
$$99^2 = (100 - 1)^2$$
. Donc:

$$99^2 = 100^2 - 2 \times 100 + 1 = 10000 - 200 + 1 = 9801$$
.

- 2. On développe (x-1)(x+1). On obtient : $(x-1)(x+1) = x^2 1$.
- On a: $99 \times 101 = (100 1)(100 + 1) = 100^2 1 = 9999$.

MÉTHODE

Pense à utiliser le résultat que tu viens de démontrer pour traiter les questions qui suivent.

Des identités remarquables et des racines carrées

DURÉE 10 MIN

- → Fiche 12 Conduire un calcul avec des racines carrées
- → Fiche 14 Développer et réduire à l'aide des identités remarquables
- → Fiche 44 Utiliser le théorème de Pythagore et sa réciproque

On donne: $E = (\sqrt{7} + 1)^2 + (\sqrt{7} - 1)^2$.

- 1. Après avoir développé les carrés, montrer que E est un nombre entier.
- 2. En déduire la nature d'un triangle dont les côtés mesurent respectivement, en centimètres, $\sqrt{7}+1$, $\sqrt{7}-1$ et 4. Justifier la réponse.

DÉMARRONS ENSEMBLE

- 1. Un nombre entier est un nombre qui peut s'écrire sans virgule.
- 2. Utilise la réciproque du théorème de Pythagore. → Fiche 44

CORRIGÉ

1. On développe E. On a :

$$E = \left(\left(\sqrt{7} \right)^2 + 2\sqrt{7} + 1 \right) + \left(\left(\sqrt{7} \right)^2 - 2\sqrt{7} + 1 \right)$$

$$E = 7 + 2\sqrt{7} + 1 + 7 - 2\sqrt{7} + 1$$

E = 16.

E est donc bien un nombre entier.

2. On a démontré à la question précédente que $(\sqrt{7}+1)^2+(\sqrt{7}-1)^2=16$ ou encore : $(\sqrt{7}+1)^2+(\sqrt{7}-1)^2=4^2$.

La réciproque du théorème de Pythagore permet d'affirmer que le triangle dont les côtés mesurent respectivement, en centimètres, $\sqrt{7}+1$, $\sqrt{7}-1$ et 4 est un triangle rectangle.

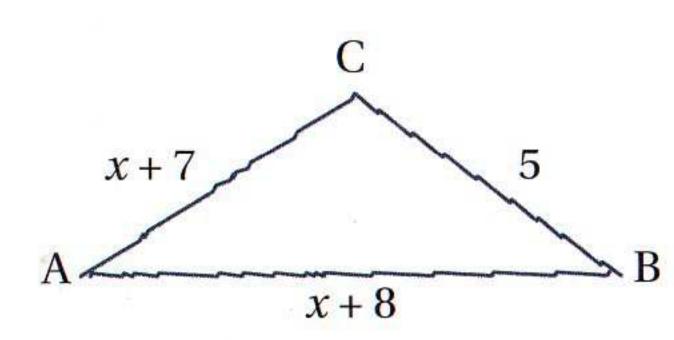
MÉTHODE

Pense à utiliser le résultat démontré à la question 1 pour traiter la suite de l'exercice.

Des identités remarquables en géométrie

DURÉE 20 MIN

- → Fiche 14 Développer et réduire à l'aide des identités remarquables
- → Fiche 44 Utiliser le théorème de Pythagore et sa réciproque



Soit *x* un nombre positif compris entre 0 et 10. Les longueurs sont exprimées en centimètres (cm) et les aires en centimètres carrés (cm²).

La figure ci-contre est dessinée à main levée. Il s'agit de savoir s'il existe une valeur de x pour laquelle ABC est un triangle rectangle.

1. Calculer AB et AC lorsque x = 4. Lorsque x = 4, ABC est-il un triangle rectangle ? Justifier la réponse.

2. Développer et réduire $(x+7)^2$ et $(x+8)^2$.

En déduire : $AB^2 - AC^2 = 2x + 15$.

Quelle est la valeur de $AB^2 - AC^2$ lorsque x = 0 ? Lorsque x = 10 ? La valeur de BC^2 dépend-elle du nombre x ?

3. Déterminer la valeur de x pour laquelle le triangle ABC est rectangle en C.

DÉMARRONS ENSEMBLE

- 1. Utilise la contraposée du théorème de Pythagore. → Fiche 44
- 2. N'oublie pas le double produit quand tu développes.
- 3. Applique le théorème de Pythagore au triangle ABC rectangle en C en prenant AB pour hypoténuse.

CORRIGÉ

1. On calcule AB et AC lorsque x = 4:

$$AB = 4 + 8 = 12 \text{ et AC} = 4 + 7 = 11.$$

On calcule les carrés des longueurs des trois côtés :

$$AB^2 = 12^2 = 144$$
; $AC^2 = 11^2 = 121$; $BC^2 = 5^2 = 25$.

On remarque que $AC^2 + BC^2 = 121 + 25 = 146$ et $AB^2 = 144$. D'après la contraposée du théorème de Pythagore, lorsque x = 4, ABC n'est pas un triangle rectangle.

2. On développe et on réduit $(x+7)^2$:

$$(x+7)^2 = x^2 + 14x + 49.$$

On développe et on réduit $(x+8)^2$:

$$(x+8)^2 = x^2 + 16x + 64$$
.

On en déduit : $AB^2 - AC^2 = (x^2 + 16x + 64) - (x^2 + 14x + 49) = 2x + 15$.

Lorsque
$$x = 0$$
, on a $AB^2 - AC^2 = 2(0) + 15 = 15$.

Lorsque
$$x = 10$$
, on a $AB^2 - AC^2 = 2(10) + 15 = 35$.

La valeur de BC² ne dépend pas du nombre x. On a BC² = 5^2 = 25 quelle que soit la valeur de x.

On dit aussi que BC² est constant.

3. ABC est un triangle rectangle en C si $AC^2 + BC^2 = AB^2$ ou encore si : $AB^2 - AC^2 = BC^2$.

D'après la question précédente, on a : $AB^2 - AC^2 = 2x + 15$ et $BC^2 = 25$.

On doit donc résoudre l'équation : 2x + 15 = 25.

Soit:
$$2x = 25 - 15$$

 $2x = 10$

x = 5.

Le triangle ABC est rectangle en C pour x = 5.

On vérifie. Pour x = 5, on a : AB = 13, AC = 12 et BC = 5.

Donc: $AC^2 + BC^2 = 12^2 + 5^2 = 144 + 25 = 169$ et $AB^2 = 13^2 = 169$.

sujet 28 Connaître les identités remarquables

DURÉE **10 MIN**

- → Fiche 14 Développer et réduire à l'aide des identités remarquables
- → Fiche 15 Factoriser à l'aide des identités remarquables

Compléter pour que les égalités soient vraies pour toutes les valeurs de x.

- 1. $(x + ...)^2 = ... + 6x + ...$
- **2.** $(... -...)^2 = 4x^2 ... + 25$.
- 3. ... -64 = (7x ...)(... + ...).

DÉMARRONS ENSEMBLE

- 1. Observe que $6x = 2 \times 3 \times x$. C'est le double produit.
- 2. $4x^2$ est le carré de 2x. Trouve un autre carré.
- 3. Observe le premier nombre dans les premières parenthèses.

CORRIGÉ

1. On a: $6x = 2 \times 3 \times x$. C'est le double produit de 3 par x, donc le nombre manquant dans les premières parenthèses est 3. On obtient en développant :

$$(x+3)^2 = x^2 + 6x + 9$$
.

2. $4x^2$ est le carré de 2x et 25 est celui de 5. On obtient les deux nombres manquants dans les parenthèses. En développant, on a:

$$(2x-5)^2 = 4x^2 - 20x + 25.$$

3. 64 est le carré de 8. C'est le nombre figurant en deuxième position dans chacune des parenthèses. On obtient :

$$\dots -64 = (7x - 8)(\dots + 8).$$

On reconnaît l'identité remarquable $a^2 - b^2 = (a - b)(a + b)$. On en déduit : $49x^2 - 64 = (7x - 8)(7x + 8).$

ATTENTION!

par 2 le double

faire apparaître le

produit des deux

Il faut diviser

produit pour

nombres.

29 Développer, puis factoriser une expression

DURÉE **15 MIN**

- → Fiche 14 Développer et réduire à l'aide des identités remarquables
- → Fiche 15 Factoriser à l'aide des identités remarquables

On pose : $D = (12x+3)(2x-7)-(2x-7)^2$.

- 1. Développer et réduire D.
- 2. Factoriser D.
- 3. Calculer D pour x = 2 puis pour x = -1.

DÉMARRONS ENSEMBLE

- 1. N'oublie pas le double produit quand tu développes $(2x-7)^2$.
- 2. Tu sais que $(2x-7)^2 = (2x-7)(2x-7)$.
- 3. Utilise l'expression développée pour x = 2 et l'expression factorisée pour x = -1.

CORRIGÉ

1. On développe et on réduit *D* :

$$D = (24x^2 - 84x + 6x - 21) - (4x^2 - 28x + 49)$$

$$D = 24x^2 - 84x + 6x - 21 - 4x^2 + 28x - 49$$

$$D = 20x^2 - 50x - 70.$$

2. On factorise *D*:

$$D = (12x+3)(2x-7) - (2x-7)(2x-7)$$

$$D = (2x-7)[(12x+3)-(2x-7)]$$

$$D = (2x-7)(12x+3-2x+7)$$

$$D = (2x-7)(10x+10).$$

3. On calcule D pour x = 2 avec l'expression développée :

$$D = 20 \times 2^2 - 50 \times 2 - 70 = 80 - 100 - 70.$$

$$Donc D = -90.$$

On calcule *D* pour x = -1 avec l'expression factorisée :

$$D = (2(-1) - 7)(10(-1) + 10) = (-2 - 7)(-10 + 10).$$

Donc
$$D = 0$$
.

ATTENTION !

Un produit est nul si l'un des facteurs est nul.

Calculer une différence de deux carrés

DURÉE 10 MIN

→ Fiche 15 Factoriser à l'aide des identités remarquables

Comment peut-on calculer astucieusement sans calculatrice : $1\,999^2-1\,998^2$? Expliquer rigoureusement la démarche et donner la réponse.

DÉMARRONS ENSEMBLE

Factorise la différence $1999^2 - 1998^2$ en utilisant une des trois identités remarquables.

CORRIGÉ

On factorise la différence 1 999² – 1 998² à l'aide de l'identité remarquable :

$$a^2 - b^2 = (a - b)(a + b).$$

On obtient:

$$1999^2 - 1998^2 = (1999 - 1998)(1999 + 1998)$$

= $1 \times 3997 = 3997$.

MÉTHODE

L'une des identités remarquables permet de calculer plus simplement la différence de deux carrés.

Reconnaître l'égalité de deux expressions

DURÉE 10 MIN

- → Fiche 14 Développer et réduire à l'aide des identités remarquables
- → Fiche 16 Calculer la valeur d'une expression pour un nombre donné

On donne $A = (x-5)^2$ et $B = x^2 - 10x + 25$.

- 1. Calculer A et B pour x = 5.
- 2. Calculer A et B pour x = -1.
- 3. Peut-on affirmer que A = B quelle que soit la valeur de x? Justifier.

DÉMARRONS ENSEMBLE

- 1. et 2. Pense à respecter les règles de priorité de calcul. → Fiche 7
- 3. Développe A et compare l'expression obtenue avec B.

CORRIGÉ

1. On calcule A et B pour x = 5.

On a:
$$A = (5-5)^2 = 0$$
 et $B = 5^2 - 10 \times 5 + 25 = 25 - 50 + 25 = 0$.

2. On calcule A et B pour x = -1.

On a:
$$A = (-1-5)^2 = (-6)^2 = 36$$
 et
 $B = (-1)^2 - 10(-1) + 25 = 1 + 10 + 25 = 36$.

3. On développe A:

$$A = x^2 - 2 \times x \times 5 + 5^2 = x^2 - 10x + 25$$
.

On en déduit que A = B quelle que soit la valeur de x.

MÉTHODE

N'oublie pas que le calcul des puissances est prioritaire sur les autres opérations.

32 Choisir la bonne expression

DURÉE 15 MIN

- → Fiche 14 Développer et réduire à l'aide des identités remarquables
- → Fiche 15 Factoriser à l'aide des identités remarquables
- → Fiche 16 Calculer la valeur d'une expression pour un nombre donné

On donne l'expression $E = (x-5)^2 + (x-5)(2x+1)$.

- 1. Pour calculer la valeur exacte de E lorsque $x = \sqrt{3}$, Marc a choisi de développer E.
- a. Quelle expression obtient-il?
- **b.** Calculer la valeur exacte de *E* lorsque $x = \sqrt{3}$.
- c. Marc a-t-il eu raison de développer E? Pourquoi?
- 2. Lorsque x = 5, choisir la forme de E qui paraît la plus adaptée pour calculer la valeur exacte de E. Faire ce calcul.

DÉMARRONS ENSEMBLE

- 1. a. Tu sais que : $(a b)^2 = a^2 2ab + b^2$.
- **b.** Souviens-toi que : $(\sqrt{3})^c = 3$.
- 2. Observe l'expression donnée au début de l'exercice.

CORRIGÉ

1. a. On développe E:

$$E = x^2 - 10x + 25 + 2x^2 + x - 10x - 5 = 3x^2 - 19x + 20$$
.

b. On calcule la valeur exacte de *E* lorsque $x = \sqrt{3}$:

$$E = 3(\sqrt{3})^2 - 19\sqrt{3} + 20 = 3 \times 3 - 19\sqrt{3} + 20 = 29 - 19\sqrt{3}$$
.

- c. Marc a eu raison de développer *E*. Le développement permet de faire moins de calculs pour obtenir le même résultat.
- 2. Lorsque x = 5, on choisit la forme de départ. On a : $E = (5-5)^2 + (5-5)(2 \times 5 + 1) = 0 + 0 \times 11$.

Donc E = 0.

MÉTHODE

Si x est la racine carrée d'un nombre, utilise la forme développée de l'expression pour la calculer.

Développer avec les identités remarquables

DURÉE 15 MIN

- → Fiche 12 Conduire un calcul avec des racines carrées
- → Fiche 14 Développer et réduire à l'aide des identités remarquables

On considère un carré ABCD de côté $1+\sqrt{3}$ et un rectangle EFGH de largeur EF = 1 et de longueur FG indéterminée. On veut que les aires des deux quadrilatères ABCD et EFGH soient égales.

Montrer que la valeur exacte de FG est alors de la forme $a+b\sqrt{3}$ où a et b sont des entiers.

Si le travail n'est pas terminé, laisser tout de même une trace de la recherche. Elle sera prise en compte dans la notation.

DÉMARRONS ENSEMBLE

Attention! lci, tu n'es pas guidé: tu dois trouver par toi-même les **étapes de la** solution.

- Calcule d'abord l'aire des deux quadrilatères.
- Puis écris une équation.

CORRIGÉ

L'aire du rectangle EFGH est égale à 1 × FG.

L'aire du carré ABCD est égal à $(1+\sqrt{3})^2$

On veut que les aires des deux quadrilatères ABCD et EFGH soient égales.

On résout l'équation : $(1+\sqrt{3})^2 = 1 \times FG$.

On développe à l'aide des identités remarquables et on obtient :

FG = 1 + $2\sqrt{3}$ + $(\sqrt{3})^2$ = 1 + $2\sqrt{3}$ + 3 = 4 + $2\sqrt{3}$.

La valeur exacte de FG doit donc être $4 + 2\sqrt{3}$.

MÉTHODE

N'oublie pas les parenthèses qui sont indispensables lorsque l'on veut écrire une somme au carré.