Exercice 1 : Tableur pour une fonction

Considérons les fonctions f, g et h définies par f(x) = 6x; g(x) = 5x - 7 et $h(x) = 3x^2 - 9x - 7$ Recopier le tableau ci-dessous en respectant les cellules :

	Α	В	С	D	E	F	G	Н
1	x	-3	-2	-1	0	1	2	3
2	f(x)=6x							
3	g(x)=5x-7							
4	h(x)=3x ² -9x-7							

Quelle formule	faut-il saisir	dans la cellule	e B2 pour	calculer l'imag	ge de -3 par	f?

- ☐ Etirer cette formule pour compléter les cellules C2, D2, E2, F2, G2 et H2.
- ☐ Indiquer la formule à saisir dans la cellule B3 pour calculer l'image de -3 par g?
- ☐ Etirer à nouveau cette formule pour compléter la ligne 3.
- ☐ Indiquer la formule à saisir dans la cellule B4 :
- ☐ Finir de compléter ce tableau.

Compléter les phrases suivantes :

- L'image de -2 par la fonction f est; l'antécédent de 18 par la fonction f est
- L'image de 3 par la fonction g est; l'antécédent de -2 par la fonction g est
- Les antécédents de 13 par la fonction *h* sont
- Traduire l'égalité suivante par une phrase : g(3) = 8 :

.....

Trouver une solution de l'équation : $3x^2 - 9x - 7 = 5x - 7$ à l'aide du tableau : $x = \dots$ Compléter : g(....) = h(....) =

Exercice 2: Tableur et courbe sur geogebra

Considérons la fonction $f(x) = x^2 - 5x - 8$.

Ouvrir Géogébra.

Construction de la courbe représentative de f :

- ☐ Afficher les « Axes » et la « Grille ».
- \square Dans le champ de saisie en bas de la fenêtre, écrire l'expression de la fonction f:

Saisie:
$$f(x) = x^2 - 5x - 8$$

En observant la courbe : Déterminer l'image de 0 :

Déterminer les antécédents de – 2 : et

Citer un nombre qui n'a pas d'antécédent :

Construction d'un tableau de valeurs :

- ☐ Cliquer sur le menu « Affichage » et cliquer sur « Tableur ».
- ☐ Taper dans la cellule A1 : -4
- \square Taper dans la cellule A2 : =A1+1 puis glisser jusqu'à la cellule A15.
 - → On dit que <u>l'incrémentation est de 1</u>.
- \square Taper dans la cellule B1 : =f(A1) puis glisser jusqu'à la cellule B15.
 - → Les images des nombres de la colonne A s'affichent dans la colonne B.
- Compléter les égalités suivantes : f(0) =

$$f(10) = \dots$$

 $f(\dots) = f(\dots) = -12$

• Modifier l'incrémentation pour trouver le nombre ayant la plus petite image : f(...) = ...

Problème :

Ouvrir Géogébra.

Une salle de classe est représentée par un carré ABCD de 6 m de côté.

Un spot placé en A éclaire la surface AECF où E est un point du côté [DC] et F un point du côté

[BC] tels que : DE = CF = t (en m).

Construction de la figure géométrique

Quelles valeurs peut prendre la variable *t* ?

- Construire la figure en suivant les différentes étapes :
- ☐ Afficher les « Axes » et la « Grille ».
- □ Placer les points A, B, C et D dans le repère comme ci-
- ☐ Cliquer sur « Polygone » puis sur les points A, B, C,
- ☐ Cliquer sur « Curseur » □ puis sur le graphique puis compléter la fenêtre comme ci-dessous :

- Cliquer sur « Segment de longueur donnée » puis sur le point D. Taper : t.
- Cliquer sur « Segment de longueur donnée » puis sur le point C. Taper : t.
- ☐ Déplacer F sur le segment [CB].
- ☐ Cliquer sur « Polygone » ▶ puis sur les points A, E, C, F et A.
- Cliquer sur 🎸 puis sur « Aire » puis sur le polygone AECF.
- ☐ Déplacer le curseur (pour faire varier t) ; que dire de l'aire du polygone AECF ?

Démonstration

1) Exprimer en fonction de t les différentes aires.

Aire du triangle ADE: Aire du carré ABCD: $A_{ADE}(t) = \dots \qquad A_{ABF}(t) = \dots$ $A_{\text{ABCD}} = \dots$ $A_{ABCD} = \dots$ $A_{ADE}(t) = \dots$ $A_{ABF}(t) = \dots$ 2) En déduire l'aire du polygone AECF: $A_{AECF}(t) = \dots$ $A_{ABF}(t) = \dots$ $A_{ABF}(t) = \dots$ $A_{ABF}(t) = \dots$

Aire du triangle ABF:

$$A_{ABF}(t) = \dots$$

$$A_{ABF}(t) = \dots$$

$$A_{ABF}(t) = \dots$$

$$A_{ABE}(t) = \dots$$

$$A_{AECF}(t) = \dots$$

$$A_{AECF}(t) = \dots$$

$$A_{AECF}(t) = \dots$$

$$A_{AECF}(t) = \dots$$