NOTION DE FONCTION AVEC TABLEUR ET GEOGEBRA

Exercice 1 : Tableur pour une fonction

Considérons les fonctions f, g et h définies par f(x) = 6x; g(x) = 5x - 7 et $h(x) = 3x^2 - 9x - 7$. Recopier le tableau ci-dessous en respectant les cellules :

	А	В	С	D	E	F	G	Н
1	x	-3	-2	-1	0	1	2	3
2	f(x)=6x		-					
3	g(x)=5x-7							
4	h(x)=3x ² -9x-7							

- \Box Quelle formule faut-il saisir dans la cellule B2 pour calculer l'image de -3 par f?
- □ Etirer cette formule pour compléter les cellules C2, D2, E2, F2, G2 et H2.
- \Box Indiquer la formule à saisir dans la cellule B3 pour calculer l'image de -3 par g?
- □ Etirer à nouveau cette formule pour compléter la ligne 3.
- □ Indiquer la formule à saisir dans la cellule B4 :
- □ Finir de compléter ce tableau.

Compléter les phrases suivantes :

- L'image de -2 par la fonction f est; l'antécédent de 18 par la fonction f est
- L'image de 3 par la fonction g est; l'antécédent de -2 par la fonction g est
- Les antécédents de 13 par la fonction *h* sont
- Traduire l'égalité suivante par une phrase : g(3) = 8 :
- Trouver une solution de l'équation : $3x^2 9x 7 = 5x 7$ à l'aide du tableau : $x = \dots$ Compléter : $g(\dots) = h(\dots) = \dots$

Exercice 2 : Tableur et courbe sur geogebra

Considérons la fonction $f(x) = x^2 - 5x - 8$.

Ouvrir Géogébra.

Construction de la courbe représentative de f :

- $\hfill\square$ Afficher les « Axes » et la « Grille ».
- \Box Dans le champ de saisie en bas de la fenêtre, écrire l'expression de la fonction f:

Saisie: $f(x) = x^2 - 5x - 8$

En observant la courbe :Déterminer l'image de 0 :Déterminer les antécédents de - 2 : etCiter un nombre qui n'a pas d'antécédent :

Construction d'un tableau de valeurs :

- $\hfill\square$ Cliquer sur le menu « Affichage » et cliquer sur « Tableur ».
- \Box Taper dans la cellule A1 : -4
- □ Taper dans la cellule A2 : =A1+1 puis glisser jusqu'à la cellule A15. → On dit que <u>l'incrémentation est de l</u>.
- □ Taper dans la cellule B1 : =f(A1) puis glisser jusqu'à la cellule B15. → Les images des nombres de la colonne A s'affichent dans la colonne B.
- Compléter les égalités suivantes : $f(0) = \dots$

 $f(10) = \dots$ $f(\dots) = f(\dots) = -12$

• Modifier l'incrémentation pour trouver le nombre ayant la plus petite image : f(....) = ...

Problème :

Ouvrir Géogébra.

Une salle de classe est représentée par un carré ABCD de 6 m de côté.

Un spot placé en A éclaire la surface AECF où E est un point du côté [DC] et F un point du côté

[BC] tels que : DE = CF = t (en m).

Construction de la figure géométrique

- \Box Quelles valeurs peut prendre la variable t?
-
- Construire la figure en suivant les différentes étapes :
- $\hfill \hfill \hfill$
- Placer les points A, B, C et D dans le repère comme cicontre.
- Cliquer sur « Polygone » puis sur les points A, B, C, D et A.
- Cliquer sur « Curseur » puis sur le graphique puis compléter la fenêtre comme ci-dessous :

Nombre	Nom					
O Angle	t					
© Entier	Aléatoire					
Intervalle	Curseur Animation					
11 57	may 6	Incrément				

- □ Cliquer sur « Segment de longueur donnée » puis sur le point D. Taper : t.
- □ Cliquer sur « Segment de longueur donnée » puis sur le point C. Taper : t.
- \Box Déplacer F sur le segment [CB].
- Cliquer sur « Polygone » puis sur les points A, E, C, F et A.
- □ Cliquer sur 🔏 puis sur « Aire » puis sur le polygone AECF.
- Déplacer le curseur *(pour faire varier t)* ; que dire de l'aire du polygone AECF ?

.....

<u>Démonstration</u>

1) Exprimer en fonction de t les différentes aires.

Aire du carré ABCD :	Aire du triangle ADE :	Aire du triangle ABF :						
$A_{ABCD} = \dots$	$A_{ADE}(t) = \dots$	$A_{ABF}(t) = \dots$						
	$A_{ADE}(t) = \dots$	$A_{ABF}(t) = \dots$						
2) En déduire l'aire du polygone	A (t) =							
$A_{\text{AECE}}(t) = \dots$	$\operatorname{ABF}(\iota) = \ldots$							
ALCE ()		$A_{\rm ABF}(t) = \dots$						
$A_{\text{AECF}}(t) = \dots$								
$A_{AECF}(t) = \dots$								

 $A_{\text{AECF}}(t) = \dots$